Structure Cristalline et Moléculaire du 9a-Fluorocortisol, C21H29O5F

PAR L. DUPONT, O. DIDEBERG, ET H. CAMPSTEYN

Laboratoire de Cristallographie, Institut de Physique, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

(Reçu le 15 mai 1972)

The crystal and molecular structure of 9α -fluorocortisol has been determined by single-crystal X-ray diffraction analysis. The crystals are orthorhombic, space group $P2_12_12_1$ with a=10.088, b=23.723, c=7.663 Å, Z=4. The structure was solved by direct methods. The parameters were refined by a block-diagonal least-squares method with 1923 intensities collected with a Hilger–Watts four-circle diffractometer. The hydrogen atoms were included in the calculation. The final *R* value was 0.046 for the 1685 reflexions considered as observed. The different bond distances and angles are in good agreement with the expected values. Torsional angle C(16)–C(17)–C(20)–O(20) is equal to 26.3°, and O(20)–C(.0)–C(21)–O(21) equal to 3.3°. Cohesion of the crystal is the result of the hydrogen bonds O(17)-H···O(21) (2.776 Å), O(21)–H···O(3) (2.772 Å) and O(11)–H···F (3.003 Å), and of van der Waals interactions.

Introduction

Depuis quelques années, on a synthétisé un grand nombre de stéroïdes, ceci afin d'obtenir des substances plus actives que les corticostéroïdes naturels. Ainsi, le cortisol agit, en outre, sur le métabolisme minéral. L'introduction d'un atome de fluor en 9α multiplie cette activité par un coefficient qui varie, suivant les auteurs, de 300 à 900. Le 9α -fluoro-4-pregnen- 11β , 17α , 21-triol-3,20-dione (C₂₁H₂₉O₅F) (Fig. 1) a donc une action sur la rétention du sodium comparable à l'hormone naturelle, l'aldostérone.

Ce travail a été entrepris dans le cadre de nos recherches dont le but est de trouver des analogies de structure moléculaire entre stéroïdes actifs.

Données expérimentales

Le produit a été cristallisé par évaporation lente d'une solution dans l'acétone, à la température ambiante. Les cristaux obtenus sont incolores et ont la forme de plaquettes perpendiculaires à l'axe b de la maille, et allongées suivant **a**. Les données cristallographiques

Fig. 1. Le 9x-fluorocortisol.

sont reprises dans le Tableau 1. Les dimensions du cristal utilisé $(0,2 \times 0,2 \times 0,1 \text{ mm})$ étaient suffisamment petites pour que l'on puisse négliger l'absorption. Les intensités de 1923 réflexions indépendantes ont été mesurées au moyen d'un diffractomètre automatique à quatre cercles Hilger-Watts; parmi celles-ci, 1685 ont été considérées comme observées $(I > 2\sigma)$. Les principales caractéristiques des mesures sont données dans le Tableau 2. Les valeurs des intensités des différents blocs de mesure ont été corrélées et remises à échelle, puis corrigées des facteurs de polarisation et de Lorentz.

Tableau 1. Données cristallographiques

$V = 1833,9 \text{ Å}^3$
$\lambda(Cu K\alpha) = 1,5418 \text{ Å}$
$D_m = 1,378 \text{ g.cm}^{-3}$ (flottaison)
$D_x = 1,369$
F(000) = 816
$\mu = 5,89 \text{ cm}^{-1}$
Masse moléculaire: 380,46

Tableau 2. Caractéristiques des mesures

Rayonnement: Cu $K\alpha = 1,5418$ Å Balayage $\omega/2\theta: \theta < 35^{\circ}$ 60 pas $\theta < 55$ 80 pas $\theta < 70$ 100 pas Temps de mesure du fond continu: 10 sec Temps de mesure d'un pas: 1 sec Compteur à scintillation

Détermination de la structure

La structure a été résolue par méthode directe utilisant le programme MULTAN de Germain, Main & Woolfson (1971). Les valeurs des phases de départ fixées par le programme pour l'affinement par la formule de la tangente étaient les suivantes: 906 (360°), 7,22,0 (90°) et 8,11,0 (360°) définissant l'origine, 0,22,0 (180°) fournie par la relation $\sum 1$ et 0,15,4 ($\pm \pi/2$), 1,17,3 ($\pm \pi/4$) et 843 $(\pm \pi/4, \pm 3\pi/4)$. Seize solutions ont ainsi été obtenues pour les phases des 458 réflexions dont la valeur de E est supérieure ou égale à 1,15. Les huit solutions différentes ayant un coefficient de mérite suffisamment élevé ont été testées par synthèse de Fourier appliquée aux E. Deux de ces analyses faisaient apparaître les positions d'un nombre maximum d'atomes (24). La bonne solution a été mise en évidence au moyen d'un calcul de facteurs de structures suivi de deux cycles d'affinement des paramètres des positions connues. Le facteur d'accord $R = \sum ||F_o| - |F_c|| / \sum |F_o|$, portant sur les 1685 réflexions observées, était alors égal à 0,36 pour la bonne solution, tandis que l'autre conduisait à la divergence du processus d'affinement. Deux nouveaux cycles d'affinement (R=0.30) suivis d'une synthèse de Fourier-différence ont fourni les positions des trois derniers atomes non hydrogène. L'affinement s'est poursuivi, portant également sur les facteurs de température isotrope jusqu'à une valeur de R égale à 0.11. Une nouvelle synthèse par Fourier-différence a alors permis de fixer les positions des atomes d'hydrogène. L'ensemble des paramètres de position (v compris les

Fig. 2. Longeurs des liaisons intramoléculaires.

Tableau	3.	Facteurs	de	structure	observés	et	calculés	(×	(1)	0))
---------	----	----------	----	-----------	----------	----	----------	-----	-----	----	---

	-		-	a 11 15 Alma					• P3 P6 44.444					
		19 966	40 Mar 1		i n n Xi		· · · · · · · · · ·	# : H	10 10 CF +	1 1 1 1 1 1			• • • •	
		11 10 10 10 10000						112 1- 9-19				1 3 4 aCM		
	: : ». 1968	1 18 18 18.1		14 Haff				E Mati		·· · · · · ·		1 11 11 2.1		14 4 72
1 47 de 2752 8 1 14 12 6	1 10 1 10.00		10 WRI	· · · ·	6. 17. 1. F									64 Mar (* *
	i i i insi					1 1 1 5		i dhi						1226
	* * *	11 149				• • • • •		10 10 CP			1 1 1 1			
		** 10. 1* 1 * 1** 1** 1#*.**				1 H H H H H		5 N#2		** 1. ** *	14 468	10 16 15 2		
1 10 10 10 10 10 10 10 10 10 10 10 10 10	• • • • •				1. 11. (* 1 8. 11. (* 1					រៃ ខេត្ត	- 1			
			18 6.5	1 10 10 10:0	1 2 6 55					: :: :: ::::::::::::::::::::::::::::::				
	110 1.22			19 446		8 4. K 84	13 9169 6		133.4	19 488		15 3.23	• • • •	
		11 12 11 11 1444 14 11 12 12	1 2 2 4 2				6 - 14, 17 3 57			2 1. 1 22		1 . 122	1 2 2 8 3	1 2 2 2 2 3
te 3. te 4		1 18 18 18 18	1 1 1 1 1 1					1 1 1 2 3		1 12 12 43 43	1 5 4 16.5	1 X X 89	• • • • • •	1 12 1 28
13 2 2 13 4 4						: # # # # #				(4 4 m m m			1 1 1 1 1	5 N N 12-13
				1 W W 29				5 663	11-263					1 1 1 1 1
	· · · · ·	1 6 8 3	•• *•. •• •		1 2 2 2 2 2	8 7. 512.4						15 25	· 21. (· ·	· · · · · ·
12 50 8 275,78 28 68 68 186. 6- 6, 5- 8 6 75,78					1 11 11 120	1 11 12		5 5.2	1 4 4 2 2				1 2 2 2 2 2 2	1 1 1 1
			· · · · ·		1 3 3 3 3		13 562 1		·				1 17 1 751	
		13 329		18 835			1 8 8 24 8				· · · · · · ·			• • • •
			F 28		· · · · ·		1.8. 11.000	1			: : :::::::::::::::::::::::::::::::::::		1. 2. 68	
	18.54	8 8 8 26	1 3 9,80		1 2 2 2 2 2	• 121 10 10 10 10		N	• • • • •					
		1 3 8 22	4 24 24 14 14 14 14 14 14 14 14 14 14 14 14 14	1 E 1888					1.47.4329			1 2 2 1 2		** 16. 1.* * * 37 \$7 186.**
					1 8 8 25			9 9 49			· · · · · · · · ·		1.2 .2 (25)	1 6 383
	389448		·	14 8.88	1 3 3 18.7	1 W. W 788	「 ぞ 希望 」	W_ 19 (1)	i tr a mat					
4 (* 19 5),6 (* 46 69 199) 20 137 ***120,6** 31 137 ***120,6**	1 # # 2.3	3 4 6 723	15.468						1.8 0.25					1 2 2 2 2 2
**** 14 GB		1 2 2 2 2 2			1 2 1 2 2			A Bath		1 W. W. &	• • •			· · ·
			• • • • •	11 0 0 KH	·		1 .07 .04 1950					14 4.85		i # 382
			1 13 11 12:5	18 445				1 3 12.0	· · · · ·				1 5 6	
· · · · · · · · · · · · · · · · · · ·	н сын н сан ш.с.	1 6 7 6 6			11 1 2 2 2	5 5 5 7 .2	- 1 B I M	7. 1 20. 01. * .*	12 2 2	10 10 10 10 10 10 10 10 10 10 10 10 10 1	······································	11 4 12	1 10 10 10 10	
					* 10. 0 I		• • • • •	6 8.25		1.3 2 55		· · · · ·	(H) H	1 14. 1 18.4
in the id diff.	. ::::::		1 12 1 2	1 a 185	1.1.1.1				1 1 1 1 1 1 1		1 4 6 16 16 1	19. 9.65		1 E 633
			1 23 21 4125	·· · · · · · · · · · · · · · · · · · ·	· /			9. 9.12.3	1 12 19 425	1992	1 1 169			
				13 23	1 1 2 2 2 3			N 11				• 11.5	• • •	
			ដែរ ដំនើម	: <u>5. 5</u> 69					1 14 19 1923		1. 22. 14 · 14			1 2 3 68
				1 3 3 8 5 3	1 1 1 12.2				: 1 1 54					· . · · ·
			K- 2, 1- 2 7 (4) (4) (4) (4)		1 2 2 2 2 2							1 ir 2.88	1 1 1 1 mili	1.1- 3.182
	; B 7. 7 ALA				1.5.4.53						1 17 1 1223		1 2 2 55	: 0 0.55
		4 P. 19 1			e. 20. 1. 2	·	1 8 8 9 9 0 P	5 3155	, F 183					: : : : : : : : : : : : : : : : : : : :
		19 893	11 936		· · · · ·		12235		1 3 4 453		•••••	10 6 64	: : : : ::::	
					13 8 28				1 12 12 (2:11	: : :,:::		•		
	2 3 8 944						· · · · · ·	10.10	1 1 9 1 5	1.2				
	32 e. 1. 1. 1 • 1.63 1.1 297.00			1 4 1 1			i i refr		• • • • •		1 1 1	12 3 65	: : : : :	
- 11 15 19 Mari ++ 22-17 ₽ - 11 Hart + 11 Mari ++ 12 Hit +2350					** *. ** * * 315 31* 2***	11473	5 117 116 100.70			111	•• •• •	· · · ·	1 12 12 12 12	
				* * * ****	15 3 3		1 8 2 10 1	1 1 1 1	• • •	: :: : :::				1 1 1 20
		1111		1 2 9 5 2		16 4 2	· · · · · · · ·	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	14 6 6	1 13 13 13 13 1		14 4 4	i 11 Y 1512	
1 1 1 the other of the state of					192 9 69		· · · · · · ·	i d' d' SH	1. h. i 		1 1 7 1 1		** *. ** *	
					· · · ·	1889			1 10 10 MARCH		** 2. 1. *	1 19 19 228	14 4 12	
			10 (00 (Pr. 45.45 40 5.1- 7						14 4 53	• # 5467 • • • • •			11 15	14 J E
r 144 149 146-149	• LTT 1+* P44.*				1 11 14 1/2 7	a 12 74 abballa								

Fig. 3. Angles des liaisons intramoléculaires.

Fig. 4. Projection (100) de la structure.

Tableau 4. Coordonnées et paramètres d'agitation thermique $(\times 10^4)$ des atomes autres que les hydrogènes, avec leurs déviations standards

Le facteur d'agitation thermique est égal à $\exp[-(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + B_{12}hk + B_{13}hl + B_{23}kl)]$

	x	у	Z	<i>B</i> ₁₁	B ₂₂	B ₃₃	B ₂₃	<i>B</i> ₁₃	B ₁₂
C(1)	8285 (4)	1342 (2)	4645 (5)	121 (5)	10(1)	97 (6)	11 (3)	43 (10)	4 (3)
C(2)	8025 (5)	708 (2)	4714 (5)	138 (6)	10 (1)	116 (6)	12 (3)	40 (11)	12 (3)
C(3)	7221 (4)	536 (1)	3174 (6)	99 (5)	9 (1)	167 (8)	4 (4)	43 (11)	1 (3)
C(4)	7603 (2)	783 (1)	1488 (5)	79 (4)	9 (1)	124 (6)	-10(3)	-5 (9)	-3(2)
C(5)	8409 (3)	1229 (1)	1369 (5)	58 (3)	9(1)	95 (6)	-5(3)	8 (8)	11 (2)
C(6)	8891 (4)	1433 (1)	-365(5)	87 (4)	10(1)	92 (6)	-17(3)	26 (9)	-2(3)
C(7)	8690 (4)	2072 (1)	-617 (5)	92 (4)	13 (1)	73 (5)	-11(3)	6 (8)	-9(3)
C(8)	9154 (3)	2425 (1)	946 (4)	53 (3)	9 (1)	, 70 (5)	-6(3)	9 (7)	-2(2)
C(9)	8618 (3)	2181 (1)	2666 (5)	50 (3)	9 (1)	83 (5)	0 (3)	-7(7)	3 (2)
C(10)	8950 (4)	1543 (1)	2945 (5)	68 (4)	9 (1)	95 (6)	1 (3)	1 (8)	8 (2)
$\mathbf{C}(11)$	8857 (4)	2560 (1)	4274 (4)	82 (4)	9 (1)	78 (5)	4 (3)	6 (8)	4 (2)
C(12)	8475 (4)	3180 (1)	3939 (4)	85 (4)	8 (1)	85 (5)	-4(3)	5 (8)	1 (2)
C(13)	9067 (3)	3421 (1)	2261 (5)	51 (3)	9 (1)	90 (5)	2 (3)	-1(7)	-3(2)
C(14)	8663 (3)	3031 (1)	737 (4)	51 (3)	10(1)	69 (5)	5 (3)	1 (7)	-3(2)
C(15)	9053 (4)	3364 (1)	-885(5)	94 (4)	11 (1)	94 (6)	12 (3)	31 (9)	2 (3)
C(16)	8783 (4)	3986 (1)	-385(5)	93 (4)	11(1)	102 (6)	15 (3)	12 (9)	1 (3)
C(17)	8447 (3)	3989 (1)	1598 (5)	57 (3)	9 (1)	120 (6)	5(3)	7 (8)	-5(2)
C(18)	10572 (4)	3497 (1)	2400 (6)	58 (4)	14 (1)	156 (7)	0 (4)	- 30 (9)	-3 (2)
C(19)	10465 (4)	1417 (2)	3018 (6)	72 (4)	15(1)	160 (7)	-12 (4)	- 53 (10)	19 (3)
C(20)	9010 (4)	4501 (1)	2571 (6)	80 (4)	10 (1)	140 (7)	6 (4)	-20 (10)	-1 (2)
C(21)	8314 (5)	4679 (2)	4219 (7)	115 (5)	12(1)	184 (8)	-27 (4)	30 (12)	2 (3)
O(3)	6312 (4)	193 (1)	3273 (5)	149 (5)	19 (1)	247 (8)	7 (4)	80 (11)	-42 (3)
O(11)	10200 (3)	2492 (1)	4779 (4)	97 (3)	15(1)	140 (5)	-4 (3)	- 95 (7)	7 (2)
O(17)	7052 (2)	3966 (1)	1911 (4)	63 (2)	11 (1)	160 (5)	10 (3)	4 (6)	1 (2)
O(20)	9984 (3)	4749 (1)	2073 (5)	140 (4)	19(1)	224 (8)	-17 (4)	67 (9)	- 54 (3)
O(21)	8990 (3)	5129 (1)	5069 (5)	109 (3)	15(1)	260 (8)	- 59 (4)	- 58 (9)	21 (2)
F(9)	7198 (2)	2191 (1)	2489 (3)	49 (2)	12(1)	124 (4)	0 (2)	17 (5)	3 (1)

H) ainsi que les facteurs de température anisotrope des atomes non hydrogène ont ensuite été affinés jusque R=0,05, en utilisant l'approximation des blocs diagonaux (3×3, 6×6). Le facteur d'agitation thermique des H était gardé constant (B=3,3 Å²). La fonction à minimiser $\sum W(F_o - F_c)^2$ était pondérée suivant le schéma de Cruickshank (1961): $W=(a+|F_o|+cF_o^2)^{-1}$, avec a=2 $F_{o \min}$ et $c=2/F_{o \max}$. Les positions des H ont ensuite été gardées fixes dans les derniers cycles. Le facteur R final est égal à 0,046.

L'ensemble des calculs a été effectué sur les ordinateurs couplés 360/65 et 360/50 du Centre de Calcul de l'Université de Liège, au moyen des programmes de Ahmed, Hall, Pippy & Huber (1966). Les facteurs de diffusion sont ceux proposés par Hanson, Herman, Lea & Skillman (1964).

Les valeurs finales des facteurs de structure observés et calculés sont reprises dans le Tableau 3.

Description de la structure at analyse du mouvement thermique des atomes

Les longueurs et les angles des liaisons intramoléculaires calculés à partir des coordonnées des Tableaux 4 et 5 sont donnés avec leurs déviations standards dans les Tableaux 6 et 7 et sur les Fig. 2 et 3. La Fig. 4 représente la projection (100) de la structure.

Tableau 5. Coordonnées des hydrogènes avec leurs déviations standards ($\times 10^3$)

	x	У	Z
H(1A)	742 (5)	152 (2)	483 (7)
H(1B)	892 (5)	148 (2)	557 (8)
H(2A)	887 (5)	47 (2)	471 (8)
H(2B)	753 (5)	61 (2)	566 (8)
H(4)	727 (5)	56 (2)	40 (7)
H(6A)	992 (5)	137 (2)	-45(8)
H(6B)	845 (5)	123 (2)	-130(8)
H(7A)	769 (5)	211 (2)	-91 (7)
H(7B)	927 (6)	217 (2)	-156(8)
H(8)	1020 (2)	243 (1)	101 (3)
H(011)	1085 (5)	261 (2)	439 (7)
H(11)	825 (5)	247 (2)	516 (8)
H(12A)	754 (5)	321 (2)	384 (7)
H(12 <i>B</i>)	882 (5)	339 (2)	492 (8)
H(14)	768 (4)	305 (1)	81 (5)
H(15A)	1003 (5)	331 (2)	-115 (7)
H(15B)	859 (5)	330 (2)	- 208 (7)
H(16A)	957 (6)	426 (2)	- 57 (7)
H(16)B)	789 (6)	415 (2)	- 110 (7)
H(O17)	627 (6)	421 (2)	174 (8)
H(18A)	1104 (3)	315 (1)	247 (5)
H(18 <i>B</i>)	1085 (6)	372 (2)	352 (8)
H(18C)	1101 (6)	368 (2)	126 (8)
H(19A)	1073 (6)	154 (2)	435 (8)
H(19 <i>B</i>)	1089 (6)	158 (2)	206 (8)
H(19C)	1065 (5)	103 (2)	303 (7)
H(21A)	734 (5)	476 (2)	383 (7)
H(21 <i>B</i>)	851 (5)	439 (2)	502 (8)
H(O21)	988 (5)	501 (2)	565 (8)

Tableau 6. Distances intramoléculaires (<2Å) avec leurs déviations standards

Les valeurs d_{cor} sont corrigées de l'effet dû à la libration du corps rigide.

	d	$d_{\rm cor}$		d
C(1) - C(2)	1,528 (5) Å	1,529 Å	C(1) - H(1A)	0,98 (6) Å
C(1) - C(10)	1,541 (5)	1,546	C(1) - H(1B)	1,01 (6)
C(2) - C(3)	1,489 (6)	1,494	C(2) - H(2A)	1,02 (6)
C(3) - C(4)	1,470 (6)	1,474	C(2) - H(2B)	0,91 (6)
C(4) - C(5)	1,337 (5)	1,340	C(4) - H(4)	1,03 (5)
C(5) - C(6)	1,496 (5)	1,500	C(6) - H(6A)	1,05 (6)
C(5) - C(10)	1,520 (5)	1,525	C(6) - H(6B)	0,98 (6)
C(6)—C(7)	1,541 (5)	1,543	C(7) - H(7A)	1,04 (6)
C(7) - C(8)	1,535 (5)	1,539	C(7) - H(7B)	0,96 (6)
C(8) - C(9)	1,538 (5)	1,542	C(8) - H(8)	1,06 (3)
C(8) - C(14)	1,529 (5)	1,531	C(11) - H(11)	0,94 (6)
C(9) - C(10)	1,565 (4)	1,566	C(12) - H(12A)	0,95 (6)
C(9) - C(11)	1,544 (5)	1,548	C(12) - H(12B)	0,96 (6)
C(10) - C(19)	1,559 (5)	1,564	C(14) - H(14)	0,99 (4)
C(11) - C(12)	1,542 (5)	1,543	C(15) - H(15A)	1,02 (6)
C(12) - C(13)	1,527 (5)	1,533	C(15) - H(15B)	1,04 (6)
C(13) - C(14)	1,544 (5)	1,548	C(16) - H(16A)	1,04 (6)
C(13) - C(17)	1,571 (5)	1,572	C(16) - H(16B)	1,12 (6)
C(13) - C(18)	1,532 (5)	1,538	C(18) - H(18A)	0,95 (4)
C(14) - C(15)	1,524 (5)	1,528	C(18) - H(18B)	1,05 (6)
C(15) - C(16)	1,550 (5)	1,551	C(18)-H(18C)	1,07 (6)
C(19) - C(17)	1,557 (5)	1,562	C(19) - H(19A)	1,10 (6)
C(17) - C(20)	1,534 (5)	1,537	C(19) - H(19B)	0,94 (7)
C(20) - C(21)	1,506 (6)	1,511	C(19) - H(19C)	0,94 (5)
			C(21) - H(21A)	1,05 (6)
C(9)—F	1,439 (4)	1,444	C(21) - H(21B)	0,94 (6)
C(3) = O(3)	1,228 (6)	1,231	O(11)-H(O11)	0,77 (6)
C(11)-O(11)	1,418 (5)	1,423	O(17)-H(O17)	0,98 (6)
C(17) - O(17)	1,429 (4)	1,433	O(21)-H(O21)	1,04 (6)
C(20) - O(20)	1,207 (5)	1,210		
C(21) - O(21)	1,424 (6)	1,425		

Tableau 7. Angles des liaisons intramoléculaires avec leurs déviations standards

Les corrections dues à la libration du corps rigide sont inférieures à 0,1°.

C(2) - C(1) - C(10)	114 1 (3)°	C(2) - C(1) - H(1A)	106 (3)°
C(1) - C(2) - C(3)	109.6 (3)	C(2) - C(1) - H(1B)	114 (3)
C(2) = C(3) = C(4)	1164(3)	C(10) - C(1) - H(1A)	112 (3)
C(2) = C(3) = O(3)	122.6(4)	C(10) - C(1) - H(1B)	103 (3)
O(3) = C(3) = C(4)	122,0(4) 120,9(4)	H(1A) - C(1) - H(1B)	108 (5)
C(3) = C(3) = C(4)	120, 9 (4) 122, 3 (3)	C(1) - C(2) - H(2A)	113 (3)
C(3) = C(4) = C(5)	122,3(3) 1210(3)	C(1) - C(2) - H(2B)	111 (4)
C(4) = C(5) = C(0)	121,0(3) 123,5(3)	C(3) - C(2) - H(2A)	108 (3)
C(4) = C(5) = C(10)	125,5(3) 115,5(3)	C(3) - C(2) - H(2B)	105 (4)
C(10) = C(0) = C(0)	112, 3(3) 112, 8(3)	H(2A) - C(2) - H(2B)	109 (5)
C(5) = C(0) = C(7)	112,0(3) 113 5 (3)	C(3) - C(4) - H(4)	115 (3)
C(0) = C(1) = C(0)	110.8 (3)	C(5) - C(4) - H(4)	122 (3)
C(7) = C(8) = C(9)	10, 3(3)	C(5) - C(6) - H(6A)	109 (3)
C(1) = C(8) = C(14)	109,4(3) 109,2(3)	C(5) - C(6) - H(6B)	110(4)
C(9) = C(0) = C(14)	109,2(3)	C(7) - C(6) - H(6A)	105 (3)
C(8) = C(9) = C(10)	113, 3(3) 114, 2(3)	C(7) = C(6) = H(6R)	110(4)
C(8) = C(9) = C(11)	114,2(3) 105.2(2)	H(6A) = C(6) = H(6B)	110(4)
C(8) - C(9) - F	103,2(2)	C(6) = C(7) = H(7.4)	103(3)
C(10) - C(9) - C(11)	114,9(3)	C(6) = C(7) = H(7R)	105(3)
C(10) - C(9) - F	104,0(2) 102.8(2)	C(0) = C(7) = H(74)	115 (3)
C(11) - C(9) - F	102,0(2)	C(8) = C(7) = H(7R)	105 (4)
C(1) = C(10) = C(3)	111,3(3) 1099(3)	H(7.4) = C(7) = H(7.8)	105(4)
C(1) = C(10) = C(9)	100,0(3)	$\Gamma(7A) = C(7) = \Gamma(7B)$	110(2)
C(1) = C(10) = C(19)	109,7(3)	C(0) = C(0) = H(0)	108(2)
C(9) = C(10) = C(3)	106,6 (3)	C(14) = C(8) = H(8)	100(2)
C(5) = C(10) = C(19)	100,0(3)	C(14) = -C(3) = H(3) C(9) = C(11) + H(11)	109(2)
C(9) = C(10) - C(19)	113,0(3)	C(12) = C(11) = H(11)	100(4)
C(9) = C(11) = C(12)	112,0(3)	O(11) = O(11) - H(11)	114(4)
C(9) = C(11) = O(11)	107,5(5)	C(11) = C(12) = H(124)	109(3)
C(11) = C(12) = C(13)	113, 3(3)	C(11) = C(12) = H(12R)	105 (3)
C(12) = C(13) = C(14)	100,1(3) 115.0(3)	C(12) - C(12) - H(124)	100(4)
C(12) - C(13) - C(17)	113, 7(3)	C(13) - C(12) - H(12B)	107(3)
C(12) = C(13) = C(16)	00 4 (3)	H(12 A) = C(12) = H(12B)	112 (5)
C(14) - C(13) - C(17)	1126(3)	C(8) - C(14) - H(14)	112(2)
C(17) C(13) - C(18)	112,0(3)	C(13) - C(14) - H(14)	101(2)
C(17) = C(13) = C(16)	113.4(3)	C(15) - C(14) - H(14)	106(2)
C(13) = C(14) = C(15)	110,7 (3)	C(14) - C(15) - H(15A)	110 (3)
C(13) = C(14) = C(15)	103.9(3)	C(14) - C(15) - H(15R)	122 (3)
C(14) - C(15) - C(16)	103, 7(3) 104, 3(3)	C(16) - C(15) - H(154)	110 (3)
C(14) - C(15) - C(10)	104,5 (3)	C(16) = C(15) - H(15R)	106 (3)
C(15) = C(10) = C(17)	103,1 (3)	H(15A) = C(15) = H(15B)	104 (5)
C(10) - C(17) - C(13)	103,1(3)	C(15) - C(16) - H(16A)	116 (3)
C(13) = C(17) = C(20)	107.7(3)	C(15) - C(16) - H(16B)	110 (3)
C(15) = C(17) = C(20)	107,7(3)	C(17) - C(16) - H(16A)	107 (3)
C(16) = C(17) = C(20)	112,4 (3)	C(17) - C(16) - H'(16B)	108 (3)
C(20) = C(17) = O(17)	108 3 (3)	H(16A) - C(16) - H(16B)	109 (5)
C(17) = C(20) = C(21)	117 2 (3)	C(13)C(18)-H(18A)	113 (2)
C(17) = C(20) = C(21)	122, 2, (4)	C(13) - C(18) - H(18B)	113 (3)
C(21) - C(20) - O(20)	120,5 (4)	C(13) - C(18) - H(18C)	114 (3)
C(20) - C(21) - O(21)	111.8 (4)	H(18A) - C(18) - H(18B)	105 (4)
C(12) - C(11) - O(11)	113.1 (3)		
	,- ()		

Tableau 7 (suite)

H(18A)-C(18)-H(18C)	100 (4)°
H(18B) - C(18) - H(18C)	111 (5)
C(10) - C(19) - H(19A)	103 (3)
C(10) - C(19) - H(19B)	110 (4)
C(10) - C(19) - H(19C)	112 (3)
H(19A)-C(19)-H(19B)	120 (5)
H(19A)-C(19)-H(19C)	102 (5)
H(19B)–C(19)–H(19C)	109 (5)
C(20) - C(21) - H(21A)	105 (3)
C(20) - C(21) - H(21B)	104 (4)
O(21) - C(21) - H(21A)	116 (3)
O(21) - C(21) - H(21B)	98 (4)
H(21A)-C(21)-H(21B)	121 (5)
C(11)O(11)-H(O11)	132 (4)
C(17)O(17)-H(O17)	139 (4)
C(21) - O(21) - H(O21)	115 (3)

Les valeurs des déplacements moyens carrés des atomes, dus à l'agitation thermique, le long des axes principaux du tenseur U et l'orientation de ces axes dans la maille sont données dans le Tableau 8. La Fig. 5 montre la configuration de la molécule, chaque atome, exceptés les H, étant représenté par son ellipsoïde de vibration thermique à 50 % de probabilité (Johnson, 1965).

En traitant l'ensemble de la molécule, exceptés C(20), C(21), O(20), O(21) et O(3), comme un corps rigide, on peut calculer les tenseurs T, L et S (Schomaker & Trueblood, 1968). Les résultats sont donnés dans le Tableau 9. L'accord entre les valeurs U_{ij} calculées et observées est bon pour tous les atomes du corps rigide

Tableau 8. Déplacements moyens carrés dus à l'agitation thermique le long des axes principaux destenseurs U des atomes dans la maille

 θ_{ix} , θ_{iy} , θ_{iz} sont les cosinus directeurs (× 10⁴) de l'axe principal *i* dans le système d'axes cristallographiques *a*, *b*, *c*.

		$\overline{u^2}$						$\overline{\mu^2}$			
	i	(×104)	θ_{ix}	θ_{iy}	$ heta_{iz}$		i	(×104)	θ_{ix}	θ_{iy}	$ heta_{iz}$
C(1)	1	646	9651	1038	2405	C(16)	1	482	9895	343	1403
	2	316	2405	-7150	-6564		2	372	1210	- 7274	-6754
	3	226	1039	6914	-7150		3	236	789	6853	-7239
C(2)	1	743	- 9609	- 1740	-2155	C(17)	1	361	1136	1672	9794
	2	351	-2718	4417	8550		2	309	8696	- 4935	-166
	3	251	- 536	8801	-4718		3	235	4805	8535	- 2015
C(3)	1	590	7319	530	6794	C(18)	1	484	- 3131	814	9462
	2	420	6815	-612	- 7293		2	409	- 917	9891	-1154
	3	267	31	9967	- 806		3	279	- 9453	- 1229	- 3022
C(4)	1	411	- 9894	821	1198	C(19)	1	611	5405	5392	- 6459
	2	385	-835	3532	-9318		2	396	1862	6719	7168
	3	240	-1188	-9319	- 3426		3	264	8205	- 5077	2627
C(5)	1	351	7777	6273	- 410	C(20)	1	457	6540	- 1429	- 7429
	2	292	2399	-2359	9417		2	378	7565	1241	6421
a (4)	3	201	5810	-7422	- 3339		3	268	5	- 9821	1882
C(6)	1	470	- 9231	2104	- 3220	C(21)	1	650	-6555	2645	- 7073
	2	348	- 3613	-7614	5383		2	554	- 7458	- 3737	5514
	3	205	-1319	6132	7788		3	281	-1185	8890	4423
C(7)	I	501	9070	- 4060	1116	O(3)	1	98 9	7965	-4186	4363
	2	355	4207	8625	-2814		2	714	2146	- 4788	- 8513
	3	202	180	3022	9531	0 (14)	3	344	5653	7717	- 2915
C(8)	1	288	- 8324	4484	- 3258	O(11)	1	659	-7711	-1874	6085
	2	200	- 5357	- 8015	265/		2	412	-914	9784	1856
C(0)	3	195	-1420	393/ 5757	9073	0(17)	3	267	-6301	875	-7716
C(9)	2	2/4	- / 340	- 3737	3001	O(17)	1	489	318	- 2587	- 9654
	2	249	- 1003	0088	1245		2	328	8940	4394	- 882
C(10)	1	360	0330	4/11	- 38/0	O(20)	3	1024	4470	- 8602	2455
C(10)	2	284	175	-742	0071	U(20)	1	1034	7420	- 548 /	3840
	3	207	3570		754		2	200	2/03	2000	- 9221
C(11)	1	431	9833	1683	600	O(21)	1	209	2505	1910	- 409
0(11)	2	269	1822	- 9196		O(21)	2	512	0007	4/34	- 0042
	3	225	57	3550	- 9348		2	271	2093	- 8807	- 4139
C(12)	ĭ	439	- 9982	- 361	-469	F	1	378	- 2630	- 1137	- 424/
-()	2	266	- 222	- 5047	8630	1	2	222	- 1307	- 0781	- 9501
	3	219	- 549	8625	5030		3	239	- 9546	1745	2414
C(13)	1	286	- 5878	6899	4226		5	200	2240	1745	2717
. ,	2	264	- 5068	931	-8570						
	3	246	-6307	-7179	2949						
C(14)	1	305	- 3536	9140	1987						
. ,	2	259	-9323	-3273	-1538						
	3	199	-755	- 2396	9679						
C(15)	1	503	9459	1364	2945						
	2	345	2683	-8392	-4730						
	3	233	1826	5264	-8304						

ainsi que pour C(20). les écarts dépassant rarement $2\sigma(U)$ (Tableau 10). Les déplacements angulaires moyens carrés de la molécule sont égaux, respectivement, à 19, 3 et $2(^{\circ})^2$ autour des axes principaux du tenseur L (Tableau 11). Il y a une forte anisotropie du mouvement de libration de la molecule, le mouvement principal s'effectuant autour d'un axe parallèle à b, c'est-à-dire, presque parallèlement à l'axe longitudinal du stéroïde.

Les corrections des distances et des angles ont été calculées, sous l'hypothèse du corps rigide, à partir du tenseur L, d'après les relations décrites par Johnson (1969) et introduites dans une version complétée du programme ORFFE (Busing, Martin & Levy, 1962). L'examen du Tableau 6 montre que les corrections des distances sont comprises entre 0,001 et 0,005 Å, les

Tableau 9. Composantes des tenseurs du corps rigide (×10⁴) rapportés à un système d'axes cartésien, dont l'origine coïncide avec l'origine de la maille et les axes avec a, b, et c.

Ont été inclus dans le calcul du corps rigide tous les atomes non hydrogène sauf C(20), C(21), O(3), O(20) et O(21). Les déviations standards (×10⁴) sont données entre parenthèses.

T (Ų)	(712 (39)	- 480 (56) 889 (81)	-658 (75) -27 (90) 4789 (224))
L(rad ²)	(7 (1)	1 (1) 59 (3)	$ \begin{array}{c} -1 \ (1) \\ -0 \ (1) \\ 9 \ (1) \end{array} \right) $
S (Å rad)	$\begin{pmatrix} -13 & (13) \\ -82 & (8) \\ 60 & (6) \end{pmatrix}$	26 (7) 11 (18) - 74 (9)	$\begin{array}{c} -32 \ (9) \\ 502 \ (24) \\ 2 \ (26) \end{array} \right)$

C(1) C(2) C(3)

C(4) C(5)

C(6) C(7)

C(8) C(9)

C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) O(11) O(17) F C(20)* C(21)* O(3)* O(20)* O(21)*

déviations standards des distances étant voisines de 0,005 Å. Quant aux angles, leurs corrections sont négligeables $(<0,1^{\circ})$.

Tableau 10 (suite)

l	U_{12}	4	U_{13}	l	U_{23}
obs	obs-calc	obs	obs-calc	obs	obs-calc
27	-28	83	36	52	26
70	13	79	-13	56	11
6	0	84	-24	18	4
- 18	- 21	-9	-16	- 46	-21
68	40	16	7	- 24	1
-12	-27	51	12	- 76	- 27
- 55	- 48	12	3	51	- 29
-10	-17	17	-3	- 26	-15
16	-11	-13	-14	-1	3
47	-6	2	14	-4	0
27	-1	11	35	17	24
8	-2	9	-13	-20	-7
-17	-3	-2	1	10	13
-16	-6	1	0	22	11
10	49	61	12	55	21
-4	39	23	3	68	10
- 29		13	1	21	-2
-17	28	- 59	- 13	1	26
118	18	- 103	-9	57	-45
44	7	- 186	24	- 18	1
6	-20	-7	-31	44	5
17	20	33	- 12	1	-9
- /	39	- 38	- 55	29	33
12	- 30	59	- 22	- 125	- 82
- 253	-208	157	-26	33	12
-327	- 225	132	115	- /9	- /3
125	192	- 14	- 130	-2/0	-1/7

Tableau 10. Composantes (10⁻⁴ Å²) calculées et observées du tenseur U des atomes rapportées au système d'axes décrit au Tableau 9

Les atomes suivis d'une astérisque (*) n'ont pas été inclus dans le corps rigide. $\sigma(U_{ij}) = 26 \ 10^{-4} \ \text{\AA}^2$

	L	/11	ι	/ ₂₂	U_{33}		
	obs	obs-calc	obs	obs-calc	obs	obs-calc	
C(1)	623	30	277	-9	289	7	
C(2)	713	-2	285	3	347	-22	
C(3)	511	-15	268	2	497	15	
C(4)	409	- 5	259	-16	369	-27	
C(5)	297	-42	265	-17	282	- 8	
C(6)	449	-17	299	-25	274	0	
C(7)	475	31	365	37	218	-13	
C(8)	276	23	2 51	- 52	209	- 31	
C(9)	256	-7	254	-23	247	19	
C(10)	351	16	245	-40	283	16	
C(11)	425	-11	268	-25	231	4	
C(12)	438	39	231	-49	254	6	
C(13)	264	0	265	-24	267	-4	
C(14)	264	-7	294	-2	205	- 33	
C(15)	4 8 3	-15	316	-26	281	15	
C(16)	479	-2	308	-15	303	- 19	
C(17)	292	- 29	257	-23	356	30	
C(18)	301	24	408	54	464	-14	
C(19)	370	14	425	75	477	-4	
O(11)	501	-31	419	61	417	48	
O(17)	325	7	325	52	477	-7	
F	251	-2	331	63	369	20	
C(20)*	411	-18	274	-13	417	16	
C(21)*	591	- 59	345	65	549	107	
O(3)*	770	152	542	263	735	6	
O(20)*	724	262	536	212	666	135	
O(21)*	564	- 364	431	119	774	250	

Tableau 11. Axes principaux du tenseur L

$\overline{\alpha^2}(^\circ)^2$	$\sqrt{\alpha^2}$ (°)	$ heta_{ix}$	θ_{iy}	θ_{iz}
19,2	4,4	-0,0264	-0,9996	0,0050
3,3	1,8	-0,4260	0,0158	0,9046
2,2	1,5	-0,9044	0,0218	-0,4261

Fig. 5. Vue en perspective de la molécule. Chaque atome, sauf les H, est représenté par son ellipsoïde de vibration thermique à 50% de probabilité.

Tableau 12. Equations de plans moyens

Les équations sont de la forme lx + my + nz = p où x, y, z et p sont exprimés en Å par rapport à un système d'axes orthogonaux parallèles à a, b, c.

Plan	Atomes	l	m	n	р
<i>A</i> 1	C(2), C(3), C(4)	0,6212	-0,7666	-0,1623	3,155
A2	C(1), C(2), C(4), C(5)	0,9269	-0,3721	-0,0482	6,547
A3B1	C(1), C(5), C(6), C(10)	-0,7337	0,6748	-0,0793	- 4,301
B2	C(6), C(7), C(9), C(10)	0,9848	0,1731	-0,0153	9,458
$\overline{B3}C1$	C(7), C(8), C(9), C(11)	-0,8437	0,5225	-0,1231	-4,824
C2	C(8), C(11), C(12), C(14)	-0,9536	-0,2961	- 0,0539	-10,522
C3D1	C(12), C(13), C(14), C(15)	-0,8755	0,4763	-0,0816	-4,208
D2	C(13), C(15), C(16), C(17)	-0,9509	-0,3063	-0,0442	-11,180
D3	C(14), C(15), C(16), C(17)	-0,9627	-0,0428	-0,2670	- 8,904
A	C(1), C(2), C(3), C(4), C(5), C(10)	0,8468	-0,5304	-0,0402	5,522
B	C(5), C(6), C(7), C(8), C(9), C(10)	-0,9943	0,1070	-0,0027	- 8,353
Ċ	C(8), C(9), C(11), C(12), C(13), C(14)	-0,9953	-0,0075	- 0,0964	-9,074
Ď	C(13), C(14), C(15), C(16), C(17)	-0,9924	-0,1105	- 0,0540	-9,773
C(1)-C(17)		-0,9916	0,1088	-0,0695	- 8,072

Discussion de la structure

Certaines distances C-C s'écartent de plus de 3σ des valeurs communément admises, c'est-à-dire sp³-sp³: 1,533; sp^3-sp^2 : 1,505 Å, sp^2-sp^2 : 1,337 et (O=C)-C=: 1,44 Å. Il s'agit principalement de C(9)–C(10): 1,566; C(3)-C(4): 1,474; C(13)-C(17): 1,572; C(10)-C(19):1,564 et C(16)-C(17): 1,562 Å. Ces écarts s'expliquent par la conformation de la molécule: répulsion des groupements méthyles, contraintes dues à la jonction des rings C et D adjonction d'un fluor sur le carbone en position 9α ; ainsi l'atome de fluor a des contacts de van der Waals nombreux et étroits avec les atomes H voisins: F-H (1A): 2,40; F-H (7A): 2,66; F-H(11): 2,40: F-H(12A): 2,65 Å; F-H(14): 2,47 Å. On rencontre un allongement significatif de C(9)-C(10) et C(13)-C(17)dans tous les stéroïdes analogues, notamment dans le 6α-fluorocortisol (Duax & Norton, 1972) où l'on trouve également une distance C(3)-C(4) de 1.478 Å. Les longueurs des liaisons C-O et l'ensemble des valeurs angnlaires dans le 9\alpha-fluorocortisol sont normales.

Tableau 13. Distances des atomes (×10³ Å) aux plans moyens (σ =0.004 Å)

	A2	A3B1	B2	<i>B</i> 3 <i>C</i> 1	C2	C3D1	D2
C(1)	-156	35					
C(2)	158						
C(3)	- 385						
C(4)	-184						
C(5)	181	- 40	-615				
C(6)		37	- 33				
C(7)			33	54			
C(8)			621	- 51	- 27		
C(9)			-32	- 59	59		
C(10)	351	- 32	32				
C(11)				55	27		
C(12)					-28	70	
C(13)					-70	- 76	- 79
C(14)					28	- 64	643
C(15)						69	82
C(16)							-128
C(17)							125

Tableau 13 (suite)

	D3	A	В	С	D C(1)-C(17)
C(1)		- 277			-117
C(2)		297			- 24
C(3)		- 126			818
C(4)		- 58			589
C(5)		73	228		- 96
C(6)			- 199		- 433
C(7)			165		- 53
C(8)			-215	- 231	- 510
C(9)			258	185	-128
C(10)		90	-237	100	- 639
C(11)				- 180	- 355
C(12)	- 1			210	204
C(13)	- /1			- 258	-293 - 230
C(14)	32			267	2/5 148
C(15)	- 49				-130 -09
C(10)	48				- 49 555
C(17)	- 31				203 500
C(10)					- 2192
C(19)					-2192
C(20)					738
O(3)					1632
O(11)					-1743
O(17)					1939
O(20)					- 801
O(21)					132
F(9)					1305

Tableau 14. Angles entre plans

Plan 1	Plan 2	
A1	A2	29,7°
A3B1	A2	21,7
A3B1	B2	52,8
B3C1	B2	42,4
B3C1	C2	49,0
C3D1	C2	45,7
C3D1	D2	46,3
C3D1	D3	32,4
A	В	24,0
В	С	8,5
С	D	6,4
A	C(1) - C(17)	26,5
В	C(1) - C(17)	3,8
С	C(1) - C(17)	6,8
D	C(1)-C(17)	12,6

Les équations des principaux plans moyens décrivant le noyau stéroïde ainsi que les valeurs de leurs angles dièdres et les distances des atomes à ces plans sont données respectivement dans les Tableaux 12, 13 et 14. La Fig. 6 montre la molécule projetée parallèlement au plan moyen C(1)-C(17). Les angles de torsion dans les cycles A, B, C et D sont repris dans le Tableau 15. Le cycle A a une conformation voisine de la demi-chaise, tandis que B et C se rapprochent de la forme chaise (Bucourt, 1964). Le calcul des paramètres proposés par Altona, Geise & Romers (1964) pour décrire le ring D des stéroïdes: $\Delta = -14,8^{\circ}$ et $\varphi_m = 48,1^{\circ}$, indique que celui-ci a une forme intermédiaire entre l'enveloppe $\beta(\Delta = -36^{\circ})$ et la demi-chaise ($\Delta = 0^{\circ}$).

La conformation de la chaîne latérale est décrite par la Fig. 7. Elle est très semblable à celles trouvées par Cooper & Duax (1969) dans le 4-chlorocortisone et par Duax & Norton (1972) dans le 6α -fluorocortisol. En particulier, l'angle de torsion C(16)-C(17)-C(20)-O(20)est égal à 26,3° et O(20)-C(20)-C(21)-O(21), à 3,3°.

Le calcul des longueurs des liaisons intermoléculaires (Tableau 16) indique la présence de trois liaisons hydrogènes: $O(11)-H\cdots F$: 3,002; $O(17)-H\cdots O(21)$: 2,776 et $O(21)-H\cdots O(3)$: 2,772 Å. La cohésion du cristal est, en outre, assurée par des contacts de van der Waals.

Tableau 16. Distances intermoléculaires (<4 Å)</th> et leurs déviations standards

Notation des positions: C(1)-C(18) $3/\overline{101}$ signifie que C(1) se trouve dans la position équivalente 1 et C(18) dans la position équivalente 3 translatée de 1 maille dans le sens -x et de une maille dans le sens +z. Les positions équivalentes sont: 1: $x, y, z; 2: \frac{1}{2} - x, -y, \frac{1}{2} + z; 3: \frac{1}{2} + x, \frac{1}{2} - y, -z; 4: -x, \frac{1}{2} + y, \frac{1}{2} - z.$

C(1)C(6)	1/001	3,878 (5) Å
C(1) - C(18)	3/T01	3,573 (6)
C(2) - C(3)	2/100	3,975 (6)

Tableau 15. Angles de torsion

 $\theta(A-B)$ est l'angle de torsion de la liaison A-B pour lequel les deux autres atomes définissant l'angle sont ceux se trouvant à chaque extrémité de la liaison, dans le même cycle.

Tableau 16 (suite)

1.0.1		- /
C(2) - C(4)	2/100	3,842 (5) Å
C(2) - O(3)	2/100	3,529 (6)
C(2) - C(18)	3/101	3,818 (6)
C(2) - O(20)	$4/2\overline{1}0$	3,330 (6)
C(3) - O(21)	3/101	3,863 (5)
C(3) - O(20)	4/210	3,387 (5)
C(4) - O(3)	2/100	3,553 (5)
C(4) - C(16)	3/T00	3,983 (6)
C(4) - C(18)	3/100	3,999 (6)
C(4) - O(20)	4/210	3,628 (5)
C(4) - O(21)	4/210	3,955 (5)
C(5) - O(21)	4/210	3,860 (5)
C(6)O(17)	3/000	3,531 (5)
C(6) - C(18)	3/100	3,697 (6)
C(6)O(21)	4/210	3,767 (5)
C(7)—O(11)	1/00T	3,970 (5)
C(7)C(18)	3/ <u>1</u> 00	3,686 (6)
C(11)O(11)	3/ <u>1</u> 01	3,762 (5)
C(12)–C(19)	3/ <u>1</u> 01	3,946 (6)
C(12)–O(11)	3/101	3,799 (5)
C(15)–F	3/000	3,648 (4)
C(16) - C(21)	2/111	3,818 (6)
C(16) - O(21)	2/111	3,514 (5)
C(16) - O(3)	3/000	3,899 (6)
C(17) - O(21)	$\frac{2}{111}$	3,434 (5)
C(19) - O(20)	4/210	3,984 (5)
C(19) = O(21)	4/210	3,903 (5)
C(20) - C(21)	$\frac{2}{111}$	3,984 (6)
C(20) = O(21)	2/111	3,688 (5)
C(21) = O(21)	2/111	3,965 (6)
C(21) = O(17)	2/110	3,837 (5)
C(21) = O(3)	3/001	3,390(0)
O(3) = O(21)	3/101	2,1/2(5)
O(3) - O(20)	4/210	3,091(3)
U(11)-F	3/001	3,002(4)
O(1/) = O(21)	2/111	2,776 (4)

Les auteurs remercient Messieurs les Professeurs H. Brasseur et J. Toussaint pour l'intérêt qu'ils ont porté à ce travail, ainsi que Monsieur Vermeire pour la sélection et la préparation de l'échantillon.

Références

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1966). NRC Crystallographic programs for the IBM/360 system. National Research Council, Ottawa, Canada.
- ALTONA, C., GEISE, H. J. & ROMERS, C. (1968). *Tetrahedron*, 24, 13.
- BUCOURT, R. (1964). Bull. Soc. Chim. Fr. p. 2081.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- COOPER, A. & DUAX, W. L. (1969). J. Pharm. Soc. 58, 1159.
- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase problem. Edited by R. PEPINSKY, J. M. ROBERTSON and J. C. SPEAKMAN. Oxford: Pergamon Press.
- DUAX, W. L. & NORTON, D. A. (1972). A publier.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A 27, 368.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL 3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- JOHNSON, C. K. (1969). In Crystallographic Computing. Edited by F. R. AHMED. Copenhagen: Munksgaard.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.

Acta Cryst. (1972). B28, 3032

Structure Cristalline et Moléculaire de la Progestérone C₂₁H₃₀O₂

PAR H. CAMPSTEYN, L. DUPONT ET O. DIDEBERG

Laboratoire de Cristallographie, Institut de Physique, Université de Liège au Sart Tilman, B-4000 Liège, Belgique

(Reçu le 13 juin 1972)

The crystal and molecular structure of progesterone has been determined by single-crystal X-ray diffraction analysis using direct methods. The unit cell is orthorhombic $P_{2,2,1,2_1}$ with a = 12.559, b = 13.798, c = 10.340 Å; Z = 4. 1715 reflexions were measured with a Hilger-Watts four-circle diffractometer. Refinement of the parameters was carried out with 1595 reflexions considered as observed. The hydrogen atoms were included in the calculations. Final R value is 4.7%. Torsional angle C(16)-C(17)-C(20)-C(21) is 8.6°. Cohesion of the crystal is due only to van der Waals interactions.

Introduction

La progestérone est une hormone stéroïde naturelle, appelée généralement hormone du corps jaune, dont le rôle concerne principalement la gestation tant animale qu'humaine. Bien qu'elle ne soit pas un corticostéroïde, nous l'avons incluse dans notre étude de la famille des corticostéroïdes car, d'une part, elle en constitue le squelette (sur lequel viennent se greffer des groupements cétones, hydroxyles, *etc.*), d'autre part, elle est une inhibitrice de l'aldostérone, le corticostéroïde le plus actif.

Une première approche de la structure de l'hormone naturelle a été réalisée par Gopalakrishna, Cooper &